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why is decision making hard?

• Reward/punishment may be delayed
• Outcomes may depend on a series of actions
⇒ “credit assignment problem” (Sutton, 1978)

How does the brain solve this problem?



for this: we need to learn 
two basic things

1. what is going to happen (prediction learning)
2. what to do about it (action learning)

Act I: 
what are animals really learning?



Very general form of 
learning from experience 

(snails - humans)

= 	 Conditional Stimulus (CS)

= 	 Unconditional Stimulus (US)

= 	 Conditional Response (CR) 
     (here, also Unconditional Response; UR)  

...with significant event

pair stimulus

measure anticipatory behavior

animals learn predictions

Ivan Pavlov
(Nobel prize portrait)

example: pigeon appetitive 
conditioning

• behavior reveals predictions
• behavior seems compulsive -- hard to avoid
• even at a cost
• and if it prevents the appetitive outcome altogether



back to basic classical 
conditioning

Under what conditions does learning occur?

1) Rescorla’s control condition 

temporal contiguity is not enough - need contingency

P(food | tone) ≠ P(food | no tone)

Credits: Randy Gallistel

will Group 2 show a conditioned response to the tone?

tone food (dots)

food contingent on tone

food not contingent on tone 
(but tone-food pairing unchanged)



contingency is also not enough.. need surprise

P(food | noise+light) ≠ P(food | noise alone)

Phase I Phase II

?

?

+

2) Kamin’s blocking

Summary so far...

• Naïvely it had seemed that pairing a neutral 
stimulus with a motivationally significant one 
is enough for prediction learning...

• ...but we also need contingency and surprise

• A super simple theory (“where is the theory? 
I only see one equation”):



The idea: error-driven learning* 
Change in value is proportional to the difference between 
actual and predicted outcome

Rescorla & Wagner (1972)

�V (CSi) = �[RUS �
�

j�trial

V (CSj)]

* strictly speaking it was Bush & Mosteller’s (1951) idea

learning rate value as 
prediction 

actual 
outcome 

value

• what would happen with random 50% reinforcement? eg. 1 1 0 1 0 0 1 1 1 0 0
• what would V be on average after learning? 
• what would the error term look like after learning?

VT+1 = VT + �[RT � VT ]

• can you estimate what learning rate (or step size) η was used in this 
simulation? (try to think how you could do the same from behavioral data) 

Rescorla & Wagner (1972)

trial number

V
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Summary so far...

• Animals (including humans) learn predictions

• Prediction learning can be explained by an 
error-correcting learning rule: 
predictions are learned from experiencing the world 
and comparing predictions to reality 
(ie, learning from prediction errors)

• Rescorla-Wagner: A simple but very powerful model

Act 2: Is that so? 
(or: there is always a “but..”)



But: second order conditioning
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animals learn that a predictor of a predictor is also a predictor!
⇒ not interested solely in predicting immediate reinforcement..

phase 1:

phase 2:

test: ?

what do you think will happen?

David Marr (1945-1980, computational vision) 
proposed three levels of analysis: 

1. the problem (Computational Level)

2. the strategy (Algorithmic Level)

3. how it is actually done by networks of neurons 
(Implementational Level)

helpful heritage from computer science: 



The problem: optimal prediction of future reinforcement

developing a model, now more formally

want to predict expected sum of future 
reinforcement

Vt = E

� �⇤

i=t+1

ri

⇥

want to predict expected sum of 
discounted future reinforcement (0<γ<1)

Vt = E

" 1X

i=t+1

�i�t�1ri

#

Vt = E

"
tendX

i=t+1

ri

#
want to predict expected sum of future 
reinforcement in a trial/episode

The problem: optimal prediction of future reinforcement

(note: t indexes time 
within a trial)

Vt = E

"
tendX

i=t+1

ri

#
want to predict expected sum of future 
reinforcement in a trial/episode

developing a model, now more formally

= E [rt+1] + Vt+1

Vt = E[rt+1 + rt+2 + ...+ rtend ]

= E[rt+1] + E[rt+2 + ...+ rtend ]



The problem: optimal prediction of future reinforcement

(note: t indexes time 
within a trial)

= E [rt+1] + Vt+1

Vt = E[rt+1 + rt+2 + ...+ rtend ]

= E[rt+1] + E[rt+2 + ...+ rtend ]

developing a model, now more formally

The algorithm: 

Temporal Difference (TD) 
learning

temporal difference prediction error δ(t+1)

Sutton & Barto 1983, 1990

Vt = E [rt+1] + Vt+1

V T+1
t = V T

t + �
�
rT
t+1 + V T

t+1 � V T
t

�

compare to: V T+1 = V T + �
�
rT � V T

�

(note: t indexes time 
within a trial,  

T indexes trials)

The problem: optimal prediction of future reinforcement



Act 3 - remedies for a faulty fortune teller
(dopamine and prediction errors)

The problem: prediction of future reward/punishment
The algorithm: Rescorla-Wagner/temporal difference 
learning, aka, learning from prediction errors
Neural implementation: does the brain use prediction 
errors for learning?

Back to Marr’s three levels



Parkinson’s Disease
→ Motor control

but also: drug addiction, gambling, 
natural rewards
→ Reward pathway?
→ Learning?

Also involved in:
• Working memory
• Novel situations
• ADHD
• Schizophrenia
• …

dopamine does everything
Dorsal Striatum (Caudate, Putamen) 

Ventral Tegmental Area 
Substantia Nigra
pars Compacta

Nucleus Accumbens
(ventral striatum) 

Prefrontal Cortex

dopamine and conditioning

• Dopamine antagonists: 
disrupt regular Pavlovian conditioning

• Self-stimulation experiments: 
stimulation of dopamine pathways is “rewarding”

Peter Shizgal, Concordia



the anhedonia hypothesis (Wise, ’80s)

• Anhedonia = inability to experience positive emotional 
states derived from obtaining a desired or biologically 
significant stimulus 

• Neuroleptics (dopamine antagonists) cause anhedonia
• Dopamine is important for reward-mediated conditioning

predictable
reward

omitted 
reward

but...



δ(t) = rt

δ(t) = Vt
δ(t) = rt-Vt-1

δ(t) = Vt δ(t) = 0-Vt-1

what are we looking at?

Schultz, Dayan & Montague 1997
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The idea: Dopamine 
encodes a reward 
prediction error

(Montague, Dayan, Barto mid 90’s)
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prediction error hypothesis of dopamine



main target: 
striatum in the 
basal ganglia 
(also PFC)

lateral 
hypothalamus

ventral tegmental 
area (dopamine)

substantial nigra 
(dopamine)

orbitofrontal 
cortex

insula

dorsal 
striatum

ventral 
striatum

amygdala

image credits: Kenny (2011)

where does dopamine project to?

organization of cortico-striatal synapses

Wickens et al, 1996



dopamine and synaptic plasticity

Wickens, Begg & Arbuthnott 1996

• prediction errors are for learning…

• cortico-striatal synapses show 
dopamine-dependent plasticity

• three-factor learning rule: need 
presynaptic+postsynaptic+dopamine

Summary so far...
• Temporal difference learning is a “better” version 

of Rescorla-Wagner learning

• derived from first principles (from definition of problem)

• explains everything that R-W does, and more 
(eg. 2nd order conditioning)

• basically a generalization of R-W to real time



Act 4: Now what do we do?

Edward Thorndike (1874-1949)

• Background: Darwin, attempts to 
show that animals are intelligent

• Tested hungry cats in “puzzle 
boxes”

• Operational definition for learning: 
time to escape

• Gradual learning curves, 
trial and error rather than ‘insight’



Thorndike: The Law of Effect

Of several responses made to the same 
situation, those which are accompanied or 
closely followed by satisfaction to the animal 
will, other things being equal, be more firmly 
connected with the situation, so that, when 
it recurs, they will be more likely to recur; 
those which are accompanied or closely 
followed by discomfort to the animal will, 
other things being equal, have their 
connections with that situation weakened, 
so that, when it recurs, they will be less 
likely to occur. The greater the satisfaction 
or discomfort, the greater the strengthening 
or weakening of the bond.

instrumental conditioning 
as adaptive control



how to model instrumental 
conditioning?

• The problem: find the best behavioral policy 
(i.e., what to do in what situation)
best in terms of?

• The real problem: the credit assignment problem
• Algorithms: Reinforcement learning

me

analyze data

read one of m10 papers

go see a movie

more formally: MDPs

a 

b 

c 

f 

g 

d 

e 

0 x 

x 

1 

2 

5 

7 

0 

3 

transitions:  P(b|a,left) = 90%; P(c|a,left) = 10% etc. 
(wonky shopping cart)

S,A,R,T
•  States S 

•  Actions  πs,a=P(a|S) 

•  Transitions  Ts→s’=P(S|S’,a) 

•  Rewards  Rs→s’=P(R|S,S’,a) 



• The idea: given the current situation, history does not matter
• P(St+1|S1,S2,…,St,a1,a2,…,at) = P(St+1|St,at)
• P(rt|S1,S2,…,St,a1,a2,…,at) = P(rt|St,at)

The Markov property
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•  States S 

•  Actions  πs,a=P(a|S) 

•  Transitions  Ts→s’=P(S|S’,a) 

•  Rewards  Rs→s’=P(R|S,S’,a) 

World: “You are in state 34. Your immediate reward is 3. You have 2 actions” 

Robot: “I’ll take action 1”

World: “You are in state 77. Your immediate reward is -7. You have 3 actions”
Robot: “I’ll take action 3”

The task description requires no memory 
(doesn’t mean that the decision maker does not 
use memory to solve the task!)

Stylized task: described fully by 
S,A,R,T



what can we compute here?
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state values:  V(S) = E[sum of future rewards|S]
actually:  Vπ(S) = E[sum of future rewards|π,S]

Key RL idea #1: Bellman’s glorious 
equation

In a Markov decision process, state values are recursive

Vπ(S) = ∑aπs,a∑s’T
a

s→s’[R
a

s→s’+Vπ(S’)]  



but there’s more:
computing the value of actions

(policy dependent) State-Action values: 
Qπ(action|state) = E[sum of future rewards|S,a,π]

• Q(left|a) = ?  Q(right|a) = ?

• which action is better?
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Key RL idea #1 (again): Bellman’s 
glorious equation

Q(S,a) = ∑s’T
a

s→s’[R
a

s→s’+V(S’)]  

But.. what if we don’t know T, R?



World: “You are in state 34. Your immediate reward is 3. You have 2 actions” 

Robot: “I’ll take action 1”

World: “You are in state 77. Your immediate reward is -7. You have 3 actions”
Robot: “I’ll take action 3”

Take actions according to policy. 
Treat experienced rewards and transitions as samples

model-free learning: sampling

Key RL idea #2: Model-free learning

Vπ(S) = ∑aπs,a∑s’T
a

s→s’[R
a

s→s’+Vπ(S’)]  

1. choose initial values V0(S)
2. at time point t and state St behave according to π
3. observe St+1 and r(St+1)
4. compute prediction error r(St+1) + V(St+1) - V(St)
5. update V(St) according to prediction error

learning of long-term values can be done using only local 
information and without a model of the environment



summary so far

Instrumental learning = learning optimal control

MDPs: class of stylized tasks

In a Markov process long term values can be defined that

• are self consistent (recursively defined)

• can be learned incrementally (dynamic programming)

• can be learned from experience even without a world model

These values are helpful because they can help us improve the policy!

is animal learning model-based 
or model-free?

?

N
on-devalued

U
nshifted

1 - Training:

? ?
3 – Test:

(extinction)

2 – Pairing with illness:

will animals work for 
food they don’t want?



Animals will sometimes work for food 
they don’t want!

→ in daily life: actions become 
automatic (habitual) with repetition

devaluation: results
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Holland (2004)

Non-devalued
Devalued

extensive
training

outcome-
insensitive
“habitual” 
model free

outcome-
sensitive

“goal directed”
model-based 

= 4

= 0

= 1

= 2

S0

S2

S1L

R

L

R

L

R

Q(L|S0) = 4

Q(R|S0) = 2

= 0Q(L|S0) = 0

S0

S2S1

4 0 1 2

L R

learn model of task through experience 

compute action values by “looking 
ahead” (mental simulation) in the map

computationally costly, but also flexible 
(immediately sensitive to change)

goal-directed actions as 
model-based reinforcement learning

Daw et al. 2005



habitual actions as 
model-free reinforcement learning

S0

S2S1

4 0 1 2

L R

• Shortcut: store values learn from past experience
– then simply retrieve them to choose action

• Can learn these from prediction errors
– incrementally, Rescorla-Wagner/TD learning
– should depend on dopamine prediction-errors
– this doesn’t require building or searching a model

Q(S0,L) = 4

Q(S0,R) = 2

Q(S1,L) = 4

Q(S1,R) = 0

Q(S2,L) = 1

Q(S2,R) = 2

Stored:

Daw et al. 2005

learning action values from prediction 
errors: Actor/Critic model 

(N.B. skipped this in talk, but I left it here anyway)

Positive prediction error 
Things are better than expected

→	update value of stimulus/state
→	update policy (probability of action)

Negative prediction error 
Things are worse than expected

→	update value of state 
→	update policy 

Sutton (1978), Barto et al. (1983)
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Actor/Critic: neural implementation 
(N.B. skipped this in talk, but I left it here anyway)
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• choosing actions is easy so behavior is 
quick, reflexive (S-R)

• but needs a lot of experience to learn

• and inflexible, need relearning to adapt 
to any change (habitual)

Q(S0,L) = 4

Q(S0,R) = 2

Q(S1,L) = 4

Q(S1,R) = 0

Q(S2,L) = 1

Q(S2,R) = 2

Stored:

habitual actions as 
model-free reinforcement learning

Daw et al. 2005



in the basal ganglia: 
two parallel routes to action selection
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reward 

information

➡ animals with lesions to DLS 
never develop habits despite 
extensive training

➡ also treatments depleting 
dopamine in DLS

➡ also lesions to infralimbic 
division of PFC (same 
corticostriatal loop) or VA 
nucleus of thalamus

Yin, Knowlton, et al. (2004)

dorsolateral
striatum lesion

control
(sham lesion)

overtrained rats

habits in the dorsolateral striatum
(N.B. skipped in talk)



even after habits have been 
formed, devaluation sensitivity 
can be reinstated by temporary 
inactivation of IL PFC

infralimbic cortex enables
habitual responding (N.B. skipped in talk)

IL PFC 
inactivation
(muscimol)

control

overtrained rats

Coutureau & Killcross, 2003

dorsomedial striatum necessary for 
goal-directed behavior (N.B. skipped in talk)

lesions of the posterior DMS (pDMS) 
cause animals to leverpress habitually 

even with only moderate training

Yin, Ostlund, et al., (2005)



prelimbic cortex also part of the 
goal-directed loop (N.B. skipped in talk)

Prelimbic (PL) PFC lesions 
cause animals to leverpress 
habitually even with only 
moderate training
(also dorsomedial PFC and 
mediodorsal thalamus (same 
loop))

moderate training
control
devalued

Killcross & Coutureau (2003)

summary so far...

• Behavioral and neural evidence for two parallel decision 
making systems in the basal ganglia

• One system (IL→DLS→VA thalamus) learns stimulus 
values using dopamine prediction errors and supports 
habitual/model-free behavior

• One system (PL→DMS→MD thalamus) seems to use a 
more flexible “cognitive map” of the task to make 
decisions, supporting goal directed/model-based behavior



Act 5: between a cliff and 
a pot of gold (in the dark)

• what is the optimal policy?

dead rich

north southa=forward
o=aaaargh
r= -10000

a=backward
o=aaaargh, r= -10000

a=forward
o=gold
r=1000

a=backward
o=gold, r=1000

retired

a=retire
o=none

r=0

a=retire
o=none
r=0



dead rich

north southa=forward
o=aaaargh
r= -10000

a=backward
o=aaaargh, r= -10000

a=forward
o=gold
r=1000

a=backward
o=gold, r=1000

• information gathering action

a=stone
o=silence

r=0

a=stone
o=clink

r=0

dead rich

north southa=forward
o=aaaargh
r= -10000

a=backward
o=aaaargh, r= -10000

a=forward
o=gold
r=1000

a=backward
o=gold, r=1000

• what to do in this case?
• integrate multiple observations across time

a=stone
p=⅔ o=silence
p=⅓ o=clink

r=0

a=stone
p=⅔ o=clink

p=⅓ o=silence
r=0



belief states in a POMDP

given a model of the environment (transition & 
observation functions, like previous diagram)

• infer hidden state using observations, model 
(and Bayes rule)

• this produces distribution over hidden states
p(north | clink) ∝ p(clink | north) p(north)

• distribution is called “belief state”

• belief states form an MDP and so we can use RL 
machinery for learning! (Kaelbling et al 1995)

Belief states in the brain?

Schultz, Dayan & Montague 1997

ISI ITI
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Belief states in the brain?



summary so far

• Belief states as framework for thinking about real world learning 
tasks: incorporating uncertainty about current state into RL

• separates inference of state (in perceptual areas?) from learning 
in basal ganglia (dopamine etc.)

• Note: confusing (or deliberate?) use of ‘decision making’

additional reading

• Rescorla & Wagner (1972) - A theory of Pavlovian conditioning:  Variations in the 
effectiveness of reinforcement and nonreinforcement - the original chapter that is so 
well cited (and well written!)

• Sutton & Barto (1990) - Time derivative models of Pavlovian reinforcement - shows step 
by step why TD learning is a suitable rule for modeling classical conditioning

• Rescorla (1988) - Pavlovian conditioning: its not what you think it is - a manifesto for 
studying big questions using simple behavior

• Niv & Schoenbaum (2008) - Dialogues on prediction errors - a guide for the perplexed
• Hare et al. (2008) - Dissociating the role of the orbitofrontal cortex and the striatum in 

the computation of goal values and prediction errors - an elegant and careful study of 
values and prediction errors in humans

• Niv (2009) - Reinforcement learning in the brain - summary of what I talked about
• Dijksterhuis et al. (2006) - On making the right choice: the “deliberation without 

attention” effect - advice for decision making in real life


