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Computation as a link between brain, mind and pathology

Task Models

2

PredictionTask Design

Maia & Frank, 2011; Wiecki, Poland & Frank 2015; Huys, Maia & Frank 2016



Computation as a link between brain, mind and pathology

3Maia & Frank, 2011; Wiecki, Poland & Frank 2015; Huys, Maia & Frank 2016; Wiecki et al 2016

• Presymptomatic Huntington’s
• Suicide attempts
• Impulsivity in Parkinson’s
• Negative Sx in schizophrenia
• Depression 



Models are (can be) great, but don’t use them blindly!

Huys 2017; Nassar & Frank 2016



Overview

• Model fitting
– Maximum likelihood

– grid search, gradient / simplex

– perils and tricks

• Bayesian approach
– likelihoods, posteriors etc

• Linking levels of analysis

• Model comparison

– hierarchical models

• Model Validation





Reward prediction error and human functional imaging

O’Doherty et al, 2004; McClure et al, 2003, Caplin et al, 2010;
Badre & Frank, 2012; D’Ardenne et al 08; Niv et al 2012 
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• Modulated by DA drugs and in Parkinsons; predictive of learning ability



Parameters matter: learning rate

Q values: probability and learning rate
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High learning rates: capture trial-to-trial adaptation

Low learning rates: slow, integrative probabilities



If the brain implements RL:
How can we infer the hidden variables (Q values, parameters, etc)?

• Assume model is correct, but has free parameters θ
(for Q learning, θ = {α, β, γ}.

• How to find θ that gives best characterization of behavior?

• Given θ:
– does this model fit better than other competing models?

– If so, are there correlates of model variables (Q values) in brain (e.g.
striatal activity)?

– see how manipulation of biology by drugs, genes, lesions.. affects

∗ parameters (learning rates, discount etc)

∗ model (e.g., from actor critic to Q learning).



Model Fitting: Maximum Likelihood
For model M, find θ that maximizes the likelihood of choices y given stimuli, rewards x

e.g., for choices between actions A and B, y = [A, B, A, A, B, A, A, A, A, B, ..]

ˆ
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Guitart Masip et al 2012
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For model M, find θ that maximizes the likelihood of choices y given stimuli,rewards x

e.g., for choices between actions A and B, y = [A, B, A, A, B, A, A, A, A, B, ..]

ˆ

Model Fitting: Maximum Likelihood



ˆHow to find θ ?
ml

• Grid search
– vary each parameter θ across a wide range with fixed stepsize (e.g. .01). i

Can plot full likelihood surface for all param combinations 

– time and/or memory intensive

– for ≤ 3 or 4 params, can use matrix operations to test all param
combinations simultaneously, but combinatorial explosion for more
params

• nonlinear optimization functions (e.g., gradient descent, “Simplex” )
– matlab functions fmincon, fminsearch, rmsearch etc

2∂ ˆ– gives estimation of Hessian L at θ : how peaked is the2 mle∂ θ
likelihood function? How stable are parameter estimates?

– find single best combination with arbitrary precision



Problems with Maximum Likelihood?

• fast search algorithms, but may get local optima

• → use various starting points for θ (rmsearch)

• But what if multiple maxima in likelihood surface that are not that

different? That is, how to interpret “MLE” if α, β = 0.2,1 gives only

slightly better fit than 1,0.2?

• multicollinearity and identifiability

• confidence in param estimates depends on model fit, and relatedly,

overall performance on the task (for poorer learners, models will fit

worse, and params are less identifiable).



Generative model to recover parameters

Are parameters separately identifiable? For one combination of “true” α, β:

Daw, 2010

• α determines rate of learning, β determines gain/discrimination/exploration.. .

• Co-linear, but separately identifiable - depending on task!

e.g., with increasingly deterministic outcomes, β determines asymptotic accuracy



Parameter recovery simulations
For all combinations of α ∈ {0.1:0.1:1}, β ∈ {1:1:5}
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RL model generated and recovered;
hierarchical shrinkage

red: generative distribution; black: recovered; blue: population stats

• summary statistics across a group gives good estimate of population stats (Holmes &
Friston, 1998; Daw 2010).

• variance is over-estimated. Need sufficient N.

• group stats should constrain estimate of individuals. How to do this in principled way?



Example: Expectancy Valence model
Iowa Gambling Task

v(t) = (1 − w)W(t) + wL(t)

w = attentional weight to losses vs wins

Ev (t + 1) = Ev (t) + a(v(t) − Ev (t))k k k

a = recency / updating / learning rate

exp(θ(t)Ev ) k

P (S (t + 1)) = #

k exp(θ(t)Ev ) jj

θ(t) = softmax gain = (t/10)c
c = response consistency



Parameter recovery: Maximum likelihood estimation

• Generative model:

1000 simulated runs of the same participant (ie same params), 150 trials each

• means of MLE parameters are very close to true values (dashed line)

• some individual runs can be off, and param at bounds

• in practice, with MLE can’t get these distributions for a single subject (unless we

tested them many times and assumed no meta-learning!)



Bayesian approach
Instead of one ML solution, quantify uncertainty in probability distributions over parameters:
How much more likely is ML compared to other potential parameter values for the same data?

• The prior P (θ) for each subject can be constrained by prior knowledge (e.g. from

iterature) and/or from the group (stay tuned).

This is what we want for real data:
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Bayesian approach
Instead of one ML solution, quantify uncertainty in probability distributions over parameters.

• The prior P (θ) for each subject can be uniform or constrained by prior knowledge (e.g. from

literature; empirical priors) and/or from the group (stay tuned).



But exact bayesian inference is hard

• approximate methods

• Markov Chain Monte Carlo (MCMC) sampling

• Variational Inference

• Expectation Maximization

…
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Sampling  

What is the average height of everyone in this room?

Method: measure all heights, add them up and divide by N

What is the average height f of people p in Canada?
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Markov Chain Monte Carlo (MCMC)  

Sampling isn’t random, but is iterative – each point is 
(stochastically) determined by the previous one:   “Markov Chain”
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MCMC: Metropolis Algorithm
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Alternate notation:

MCMC: Metropolis Algorithm



MCMC: Metropolis Algorithm



Huh? Why does that work?
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• Probability of transitioning to one point vs the other in parameter space is 
ratio of their posterior probabilities (with P = prior*likelihood)

• No need to calculate P(D) integral: cancels out in ratio P(q+1)/P(q)

• So, just plot histogram of how often each point visited; with enough 
samples can reconstruct posterior distribution!

• While prior*likelihood may be high for any one point, need to know how 
high it is relative to other parameters (normalization). We get this only after 
sampling many points and looking at the final relative density

Intuition from last slide



How do we express the probability that a theory is true?

We’d like to be able to express our uncertainty as:
P ( Model is True | Observed Data )

But, based on our foundation 1, we cannot state 
that the model is true with probability X, because it 
is either the true model, or not.

Instead, we are limited to a knowledge of:
P ( Observed Data | Model is True )



Metropolis Algorithm: 
Burn in and convergence



As Scientists…

Bayesian statistician think like scientists.

Should we make inferences based on all information at 
our disposal?

Should we see how new data effects our (old) inferences?

Do we need to identify all hypotheses (or states of 
nature) that may be true
Do we need to know what each hypothesis (or state 
of nature) predicts that we will observe

Need to know how to compute the consequences. i.e. 
we need to know how to update our old inferences in 
light of our observations

Yes
Yes

Yes
Yes

Yes



Convergence Issues: Trace Plot

• One way to see if our chain has converged is to see 
how well our chain is mixing, or moving around the 
parameter space.

• If our chain is taking a long time to move around the 
parameter space, then it will take longer to converge.

• A trace plot is a plot of the iteration number against 
the value of the draw of the parameter at each 
iteration.



Trace Plot



Autocorrelation

The lag k autocorrelation ρk is the correlation 
between every draw and its kth lag:

We would expect the kth lag autocorrelation 
to be smaller as k increases
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Autocorrelation



Gelman-Rubin R Statistic: 
Run multiple chains and see if they get 

the same answer
• Run m≥2 chains of length 2n from over-dispersed 

starting values.

• Discard the first n draws in each chain.

• Calculate the within-chain and between-chain variance.

• Calculate the estimated variance of the parameter as a 
weighted sum of the within-chain and between-chain 
variance.

• Calculate the potential scale reduction factor.



Remember Maximum likelihood estimation?

• Generative model:

1000 simulated runs of the same participant (ie same params), 150 trials each

• means of MLE parameters are very close to true values (dashed line)

• some individual runs can be off, and param at bounds

• in practice, with MLE can’t get these distributions for a single subject (unless we

tested them many times and assumed no meta-learning!)



Expectancy Valence model
Iowa Gambling Task, Bayes (MCMC)

P (θ|D) ∝ P (D|θ)P (θ)

use sampling (MCMC) to do bayes inference (integrals hard to compute analytically )

Tools: STAN, JAGS, WinBUGS and matlab or R; Python (pyMC)



Posterior distributions

one simulated subject, one run, 150 trials

• Posterior distribution shows uncertainty: single subject fit!
Wetzels et al., 2010



Joint and Marginal Posterior Distributions



Fitted RL-DDM, joint distributions
ADHD on/off meds

Pedersen, Frank & Biele, 2017



Groups and individuals

• Two extremes:
– Fit every participant separately, as if they are completely unrelated;

– Pool the data and assume that participants are identical copies

• Both assumptions are unreasonable



Joint and Marginal Posterior Distributions:
Separate individual model



Groups and individuals

• Two extremes:
– Fit every participant separately, as if they are completely unrelated;

– Pool the data and assume that participants are identical copies

• Both assumptions are unreasonable

• Compromise: participants are similar, yet different (random effects)

• Individual subject parameters are drawn from distributions, and we
also infer the parameters of those group distributions...



Groups and individuals

• Two extremes:
– Fit every participant separately, as if they are completely unrelated;

– Pool the data and assume that participants are identical copies

• Both assumptions are unreasonable

• Compromise: participants are similar, yet different (random effects)

• Individual subject parameters are drawn from distributions, and we
also infer the parameters of those group distributions...

P (D|θ)P (θ|λ)P (λ)
P (θ, λ|D) =

P (D)

P (D|θ)P (θ|λ)P (λ)
P (θ, λ|D) =

&
P (D|θ)P (θ|λ)P (λ)dθdλ





Joint and Marginal Posterior Distributions:
Structured individual differences model



Ahn et al in 2011
Wiecki, Sofer & Frank 2013
Pedersen, Frank & Biele 2017

Hierarchical Bayes Improves Parameter Recovery 
in RL and DM models 



Model Selection / Comparison

• “A scientific theory should be as simple as possible, but no simpler”

• Various metrics of model selection (Bayes Factor, BIC, AIC, DIC, WAIC, LOO, FE..),

• but all are, roughly: - P(D|M) + complexity(M)

• None is perfect.  Do model recovery simulations for your task and models!



MCMC: Metropolis Algorithm

Sampling isn’t random, but is iterative – each point is (stochastically) 
determined by the previous one:   “Markov Chain”





Warning! (and opportunities...)
Just because a model accounts for most variance doesn’t mean it is for the reason that we
think. Parameters soak up variance as best they can given model constraints.

e.g., α is NOT corticostriatal synaptic plasticity. α = update of organism as a whole..



Warning! (and opportunities...)

How well does the “best” (least worst) model fit key features of the data? 

.
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Same Stats, Different Graphs: 
Generating Datasets with Varied Appearance and 
Identical Statistics through Simulated Annealing 

 Justin Matejka and George Fitzmaurice 
Autodesk Research, Toronto Ontario Canada 

{first.last}@autodesk.com 

 

 

 
Figure 1. A collection of data sets produced by our technique. While different in appearance, each has the same summary statistics 
(mean, std. deviation, and Pearson’s corr.) to 2 decimal places. (x͞ =54.02, y͞ = 48.09, sdx = 14.52, sdy = 24.79, Pearson’s r = +0.32)

ABSTRACT 
Datasets which are identical over a number of statistical 
properties, yet produce dissimilar graphs, are frequently used 
to illustrate the importance of graphical representations when 
exploring data. This paper presents a novel method for 
generating such datasets, along with several examples. Our 
technique varies from previous approaches in that new 
datasets are iteratively generated from a seed dataset through 
random perturbations of individual data points, and can be 
directed towards a desired outcome through a simulated 
annealing optimization strategy. Our method has the benefit 
of being agnostic to the particular statistical properties that 
are to remain constant between the datasets, and allows for 
control over the graphical appearance of resulting output.  

INTRODUCTION 
Anscome’s Quartet [1] is a set of four distinct datasets each 
consisting of 11 (x,y) pairs where each dataset produces the 
same summary statistics (mean, standard deviation, and 
correlation) while producing vastly different plots (Figure 
2A). This dataset is frequently used to illustrate the 
importance of graphical representations when exploring 
data. The effectiveness of Anscombe’s Quartet is not due to 
simply having four different data sets which generate the 

same statistical properties, it is that four clearly different and 
identifiably distinct datasets are producing the same 
statistical properties. Dataset I appears to follow a somewhat 
noisy linear model, while Dataset II is following a parabolic 
distribution. Dataset III appears to be strongly linear, except 
for a single outlier, while Dataset IV forms a vertical line 
with the regression thrown off by a single outlier. In contrast, 
Figure 2B shows a series of datasets also sharing the same 
summary statistics as Anscombe’s Quartet, however without 
any obvious underlying structure to the individual datasets, 
this quartet is not nearly as effective at demonstrating the 
importance of graphical representations. 

While very popular and effective for illustrating the 
importance of visualizations, it is not known how Anscombe 
came up with his datasets [5]. Our work presents a novel 
method for creating datasets which are identical over a range 
of statistical properties, yet produce dissimilar graphics. Our 
method differs from previous by being agnostic to the 
particular statistical properties that are to remain constant 
between the datasets, while allowing for control over the 
graphical appearance of resulting output.  

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from Permissions@acm.org. 
CHI 2017, May 06 - 11, 2017, Denver, CO, USA 
Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM 978-1-4503-4655-9/17/05…$15.00  
DOI: http://dx.doi.org/10.1145/3025453.3025912 

 
Figure 2. (A) Anscombe’s Quartet, with each dataset having 
the same mean, standard deviation, and correlation. (B) 
Four unstructured datasets, each also having the same 
statistical properties as those in Anscombe’s Quartet. 
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B

I II III IV



Warning! (and opportunities...)
How well does the “best” (least worst) model fit key features of the data? 

.



Model validation is informative 
about where your model misses

Guitart Masip et al, 2011



Model validation: 
simple RL model

• Value of an option: Q
• Reward Prediction Error: RPE = r - Q

Qt+1 ß Qt + a RPE

Sutton & Barto 1998

Each option value is updated with RPE and 
stored until needed again



RLWM Task

̸

Anne Collins



RL Model simulations  

Collins & Frank, 2012
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Model validation failure:
simulate your data!

Collins & Frank, 2012

Effect of set-size on learning is not 
accounted for by vanilla RL
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Effect of set-size on learning is not 
accounted for by vanilla RL
(even with multiple learning rates)
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Effect of delay on learning is not 
accounted for by vanilla RL  



Model validation success!
RL+WM explains behavior

Best fitting model behaviors:

Collins & Frank, 2012

RLWM accounts for both load and delay effects
- Decrease in load effect as RL learns
- Decrease in delay effect as RL becomes more 

reliable than WM



Model-based EEG

Collins & Frank 2016 Cognition
Collins & Frank 2018 PNAS



Within-trial dynamics: RL

Collins & Frank 2018 PNAS

Note: reward =1
In all cases

RPE = R(t) – Q(t)
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Within-trial dynamics: RL

Collins & Frank 2018 PNAS

Note: reward =1
In all cases

FPE = R(t) – SQ(t)



Collins & Frank 2018 PNAS

Within-trial dynamics: RL

Note: reward =1
In all cases

FPE = R(t) – SQ(t)



Collins & Frank 2018 PNAS

Within-trial dynamics: RL



Within-trial dynamics: WM/RL interactions

Collins & Frank 2018 PNAS



Why use hierarchical bayes:
Detection of effect as a function of # Subjects

Wiecki et al 2013



Regression of physio variable onto DDM param:
Probability of detecting an effect

Wiecki et al 2013



Drift diffusion model as the choice rule 
in reinforcement learning

Pedersen, Frank & Biele, 2017



Simultaneous Es-ma-on of RL and DDM

Pedersen, Frank & Biele, 2017



Pedersen, Frank & Biele, 2017

Parameter recovery



Fitted parameters, joint distributions
ADHD on/off meds

Pedersen, Frank & Biele, 2017



HDDM empirical priors



fMRI and EEG experiment

Frank et al 2015



fMRI and EEG experiment: behavior

posterior predictive checks are important!

Frank et al 2015



fMRI and EEG experiment

Frank et al 2015

also: STN spikes directly linked to threshold during conflict task, Herz et al 2016



Application to Computational Psychiatry and Neurology

Wiecki, Poland & Frank 2013



Why use DDM: Simulation experiment and classification of
groups

• generated data from DDM with two groups with different parameters

• classification of observed data based on fitted model params or raw
behavioral summary statistics

Wiecki, Poland & Frank 2013



Real data: classification of DBS state

Wiecki, Poland & Frank 2013

Also classifies Huntington’s disease before symptom onset! Wiecki,et al., 2016



Linking levels

• Strategy to interpret and link across levels of description

• Mutually informative: algorithm informs biological interpretation; biology informs
abstraction

Frank, 2015; Collins & Frank, 2013; Ratcliff & Frank, 2012; Franklin & Frank, 2016)
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Modeling the BG model

Modeling the BG Model
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