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Computation as a link between brain, mind and pathology
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Computation as a link between brain, mind and pathology
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Models are (can be) great, but don’t use them blindly!

Model building The first step is to build a series of models. Each contains an internal process by which
different choice options are valued, and a link function which describes how preferences turn into
observed decisions. At least two models should be built: a model MO of 'no interest’ that performs
the task, but without involving the process of interest, and a model M1 that does contain the
process of interest.

Validation on surrogate data

1. Data generation: Run each model on the experiment from which data will be examined. Do
the generated data look reasonable?

2. Surrogate model fitting: Fit each model to the data generated from it. Are the true parame-
ters readily recovered? Are some parameters not identifiable?

3. Surrogate model comparison: Does the model comparison procedure correctly identify the
data generated by each model?

Real data analysis

1. Real model fitting: Fit each model to the real data.

2. Real model validation: Run each model with the fitted parameters on the exact experimental

instance presented to that particular subject. Are the key features of the real data captured

reasonably?

Real model comparison: choose the least complex model that best accounts for the data.

. Parameter examination: only at this point should the parameters of the model be examined,
and only the parameters of the most parsimonious model should be ascribed meaning.
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Huys 2017; Nassar & Frank 2016



Overview

* Model fitting

— Maximum likelihood
— grid search, gradient / simplex

— perils and tricks

* Bayesian approach

— likelihoods, posteriors etc
— hierarchical models

* Model comparison

e Model Validation

¢ Linking levels of analysis



Example simple RL model: Q learning

Error in predicted reward:

o = (Tt + v maax Q (5141, a,)) — Q4(s,a)

Update value estimate:

Qi(s,a) + Qi(s,a) + ad(t)

Select among Q values (“softmax”):

Softmax Logistic Function
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v = discount, o = learning rate, 3 = “temperature” / exploration parameter

Watkins & Dayan 1992



Reward prediction error and human functional imaging

* Parametric contrast (RPE convolved with HRF)
* Modulated by DA drugs and in Parkinsons; predictive of learning ability

O’Doherty et al, 2004; McClure et al, 2003, Caplin et al, 2010;
Badre & Frank, 2012; D’Ardenne et al 08; Niv et al 2012



Parameters matter: Iearning rate
Q values: probability and learning rate
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High learning rates: capture trial-to-trial adaptation
Low learning rates: slow, integrative probabilities



If the brain implements RL:
How can we infer the hidden variables (Q values, parameters, etc)?

e Assume model is correct, but has free parameters 0
(for Q learning, 0 = {«, 3, Y}.

e How to find O that gives best characterization of behavior?

e Given O:

— does this model fit better than other competing models?

— If so, are there correlates of model variables (Q values) in brain (e.g.
striatal activity)?

— see how manipulation of biology by drugs, genes, lesions.. affects

* parameters (learning rates, discount etc)

* model (e.g., from actor critic to Q learning).



Model Fitting: Maximum Likelihood

For model M, find O that maximizes the likelihood of choices y given stimuli, rewards x
e.g., for choices between actions Aand B,y = [A,B, A, A, B, A, A A A, B, ..]
01 = arg max p(y|z, )
Across all n trials ¢:

p(ylz,0) = ] p(yilzt, 0)

t=1:n



Model Fitting: Maximum Likelihood

For model M, find O that maximizes the likelihood of choices y given stimuli, rewards x

e.g., for choices between actions Aand B,y = [A,B, A, A, B, A, A A A, B, ..]

n

01 = arg max p(y|z, )

Across all n trials t:

p(ylz,0) = ] p(yilzt, 0)

t=1n
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Model Fitting: Maximum Likelihood

For model M, find O that maximizes the likelihood of choices y given stimuli,rewards x

e.g., for choices between actions Aand B,y = [A,B, A, A, B, A, A A A, B, ..]
01 = arg max p(y|z, )

Across all n trials t:

p(ylz,0) = ] p(yilzt, 0)

t=1:n
p(y¢|z:,0) = [0.5,0.4,0.7,0.8,0.4,0.8,0.85,0.9,0.1, ...]
In practice use log likelihood:
L = log(p(ylz,0)) = log([ [, p(yt|xt,0)) = >, log(p(ye|xt, 8)) = log(0.5) + log(0.4)..

)



Model Fitting: Maximum Likelihood

For model M, find O that maximizes the likelihood of choices y given stimuli,rewards x

e.g., for choices between actions Aand B,y = [A,B, A, A, B, A, A A A, B, ..]

0,1 = arg mOaXp(yI:v,G)

Across all n trials t:

p(ylz,0) = ] p(yilzt, 0)

t=1:n
p(y¢|z, 0) = [0.5,0.4,0.7,0.8,0.4,0.8,0.85,0.9,0.1, ...]
In practice use log likelihood:
L = log(p(ylz,0)) = log([ [, p(yt|xt,0)) = >, log(p(ye|xt, 8)) = log(0.5) + log(0.4)..

— compare to model predicting chance (here p=0.5) for all trials: R =1o0g(0.5") = n log(0.5)

— pseudo-R? = % (Camerer & Ho, 1999)
best fitting model typically in range 0.1-0.7 for RL (depends on performance, difficulty..)



Howtofind ® ?

ml
e (Grid search

— vary each parameter 0;across a wide range with fixed stepsize (e.g. .01).
Can plot full likelihood surface for all param combinations

— time and/or memory intensive

— for <3 or 4 params, can use matrix operations to test all param

combinations simultaneously, but combinatorial explosion for more
params

* nonlinear optimization functions (e.g., gradient descent, “Simplex” )

— matlab functions fmincon, fminsearch, rmsearch etc

— find single best combination with arbitrary precision

2 R
662 eL at 0,,;, : how peaked is the

likelihood function? How stable are parameter estimates?

— gives estimation of Hessian



Problems with Maximum Likelihood?

fast search algorithms, but may get local optima
— use various starting points for O (rmsearch)

But what if multiple maxima in likelihood surface that are not that

different? That is, how to interpret “MLE” if , 3 =0.2,1 gives only
slightly better fit than 1,0.2?

multicollinearity and identifiability

confidence in param estimates depends on model fit, and relatedly,

overall performance on the task (for poorer learners, models will fit
worse, and params are less identifiable).



Generative model to recover parameters

Are parameters separately identifiable?  For one combination of “true” a, {3:

1
0.8
06 Daw, 2010
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* o determines rate of learning, 3 determines gain/discrimination/exploration.. .

¢ Co-linear, but separately identifiable - depending on task!

e.g., with increasingly deterministic outcomes, 3 determines asymptotic accuracy



For all combinations of a € {0.1:0.1:1}, B € {1:1:5}
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RL model generated and recovered;
hierarchical shrinkage
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red: generative distribution; black: recovered; blue: population stats
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* summary statistics across a group gives good estimate of population stats (Holmes &

Friston, 1998; Daw 2010).

e variance is over-estimated. Need sufficient N.

e group stats should constrain estimate of individuals. How to do this in principled way?



Example: Expectancy Valence model
Iowa Gambling Task

v(t) = (1 —w)W(t) +wL(t)
w = attentional weight to losses vs wins

Ev,(t+ 1) = Ev,(t) + a(v(t) — Evi(t))

a = recency / updating / learning rate

exp(0(t) Evy)

P(Sp(t+1)) = S exp(0(t)Ev;)

6(t) = softmax gain = (¢t/10)°
¢ = response consistency



Parameter recovery: Maximum likelihood estimation

Density
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Generative model:

1000 simulated runs of the same participant (ie same params), 150 trials each

means of MLE parameters are very close to true values (dashed line)

some individual runs can be off, and param at bounds

in practice, with MLE can’t get these distributions for a single subject (unless we

tested them many times and assumed no meta-learning!)



Bayesian approach

Instead of one ML solution, quantify uncertainty in probability distributions over parameters:
How much more likely is ML compared to other potential parameter values for the same data?

This is what we want for real data:

N
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Bayesian approach

Instead of one ML solution, quantify uncertainty in probability distributions over parameters.

Given model M parametrized by 6

P(D|0) P(6)
[ P(D|6)P(0)do

P(6|D) =

all P’s above are full distributions V8, not point estimates

N

200 =
150 =
100 =

posterior

0.0 0.1 0.2
Parameters



Bayesian approach

Instead of one ML solution, quantify uncertainty in probability distributions over parameters.

Given model M parametrized by 6

P(D|6)P()
[ P(D|0)P(6)do

P(0|D) =

all P’s above are full distributions V8, not point estimates

Maximum a posteriori (MAP) estimate:

Omap = arg max P(y|z,0)P(0)

Takes into account prior P(6).

* The prior P (0) for each subject can be uniform or constrained by prior knowledge (e.g. from

literature; empirical priors) and/or from the group (stay tuned).



But exact bayesian inference is hard

approximate methods
Markov Chain Monte Carlo (MCMC) sampling
Variational Inference

Expectation Maximization

Given model M parametrized by 6

P(D|6)P()
[ P(D|0)P(6)do

P(0|D) =

all P’s above are full distributions V8, not point estimates



But exact bayesian inference is hard

approximate methods
Markov Chain Monte Carlo (MCMC) sampling
Variational Inference

Expectation Maximization



Sampling

What is the average height of everyone in this room?

Method: measure all heights, add them up and divide by N

What is the average height f of people p in Canada?

Surveying works for large and notionally infinite populations.



Sampling

What is the average height of everyone in this room?

Method: measure all heights, add them up and divide by N

What is the average height f of people p in Canada?

Epeclf E Z f(p), ‘“intractable”?
c] peC
;S
~ §Z f(p(s))T for random survey of S people {p{*)} € C
Y s=1

Surveying works for large and notionally infinite populations.



Simple Monte Carlo

Statistical sampling can be applied to any expectation:

In general:

Example: making predictions

p(z|D) = / P(2|6,D)P(6|D) ¢

X

S
1 s s
§§ 1:P(:1:|6'( ) D), 6') ~ P(4|D)



Properties of Monte Carlo

Estimator: /f(:v)P )dr ~ l Zf () 26 ~ P(a)

Estimator is unbiased:

Ep {m(s)})[ ] ZEP(:B) f(@)] = Ep)[f(z)

Variance shrinks o 1/5":
. 1 )
Valp((z(s)}) {f ] = ?ZV‘HIP(:B) f(z)] = varp()|f(z)] /5
s=1

“Error bars" shrink like v/.S



A dumb approximation of 7

1 0<zxz<1 and O<y<1
P(z,y) = {

0 otherwise

T = 4//1[ ((:1:2 +1%) < 1)P(z,y) dz dy

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.x*a,2)<1)
ans = 3.3333
octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.1418



Markov Chain Monte Carlo (MCMC)

Sampling isn’t random, but is iterative — each point is
(stochastically) determined by the previous one: “Markov Chain”



Markov Chain Monte Carlo (MCMC)

Sampling isn’t random, but is iterative — each point is
(stochastically) determined by the previous one: “Markov Chain”

Choose a candidate density ¢(6°(6'""1)) that is a valid
density function for every possible value of the

conditioning variable 81, and satisfies
0(6°(6"Y) = q(6" )

.e., ¢ Is symmetric In its arguments.



MCMC: Metropolis Algorithm

Given a starting value 6% at iteration ¢ = 0, the algorithm
proceeds as follows:

® Metropolis Algorithm: For (¢t € 1 : T'), repeat:
1. Draw 6* from ¢(-|0"—1)
2. Compute the ratio
r=p(6")/p(6"")



MCMC: Metropolis Algorithm

Given a starting value 6% at iteration ¢ = 0, the algorithm
proceeds as follows:

® Metropolis Algorithm: For (¢t € 1 : T'), repeat:
1. Draw 6* from ¢(-|0"—1)
2. Compute the ratio
r=p(6")/p(6""V)
3. Ifr>1,seto® = g*:

It < 1, set g® 6* with probability »
?. {::ﬂ ’ - - 1 ngn
6(*~1) with probability 1 — »



MCMC: Metropolis Algorithm

Given a starting value 8\) at iteration ¢ = 0, the algorithm
proceeds as follows:

® Metropolis Algorithm: For (¢t € 1 : T'), repeat:
1. Draw 6" from ¢(-|@"~ 1)
2. Compute the ratio
r=p(6")/p(0") =
3. Ifr > 1, set o) = g*;
{ 6* with probability -

It < 1, set ) =
’ 6(t=1) with probability 1 — »

'P(gproposed)
move — 1 . . 1
i o ( P(Ocuceent) )



MCMC: Metropolis Algorithm

Given a starting value 6° at iteration ¢ = 0, the algorithm
proceeds as follows:

® Metropolis Algorithm: For (t € 1 : T), repeat:
1. Draw 6* from ¢(-|@"—Y)
2. Compute the ratio
r=p(6")/p(6""V) = exp[log p(8*) — log p(6~ )]
3. Ifr>1, set 0¥ = 9*;
o~ 1 seto® — { thyvli)th probability-yj
0 with probability 1 — r

» Then a draw 6Y) converges in distribution to a draw
from the true posterior density p(9|y).



Huh? Why does that work?



Huh? Why does that work?

p(@ — 6+1)  Smm(PE+1)/P6),1)
p(+1 - @)  Smin(PH)/P@H+1),1)

P },(BH) if P(6 + 1) > P(6)

= 4

OO if PO+ 1) < P(B)

\

_ P(H+1)
PO




Intuition from last slide

Probability of transitioning to one point vs the other in parameter space is
ratio of their posterior probabilities (with P = prior*likelihood)

No need to calculate P(D) integral: cancels out in ratio P(6+1)/P(0)

So, just plot histogram of how often each point visited; with enough
samples can reconstruct posterior distribution!

While prior*likelihood may be high for any one point, need to know how
high it is relative to other parameters (normalization). We get this only after
sampling many points and looking at the final relative density



Metropolis algorithm

™ %e

L

o Perturb parameters: Q(#';6), e.g. N'(6,0?)

P(¢'|D
o Accept with probability min(l, a.( ‘ ))

P(6D)

e Otherwise keep old parameters

0 05 1 15 2 25 3

Detail: Metropolis, as stated, requires Q(8'; 8) = Q(8;8") This subfigure from PRML, Bishop (2006)



Metropolis Algorithm:
Burn in and convergence




Consistency checks

Do | get the right answer on tiny versions
of my problem?

Can | make good inferences about synthetic data
drawn from my model?

Getting it right: joint distribution tests of posterior simulators,
John Geweke, JASA, 99(467):799-804, 2004.



Convergence Issues: Trace Plot

One way to see if our chain has converged is to see
how well our chain is mixing, or moving around the
parameter space.

If our chain is taking a long time to move around the
parameter space, then it will take longer to converge.

A trace plot is a plot of the iteration number against
the value of the draw of the parameter at each
iteration.



Trace Plot
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Autocorrelation

The lag k autocorrelation p, is the correlation
between every draw and its kth lag:

We would expect the kth lag autocorrelation
to be smaller as k increases

n—k
Z(xi _)_C)(xmc _)_C)
,Ok — i=1 -

Z(xi _)_C)

i=1
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Gelman-Rubin R Statistic:
Run multiple chains and see if they get
the same answer

Run m>2 chains of length 2n from over-dispersed
starting values.

Discard the first n draws in each chain.

Calculate the within-chain and between-chain variance.
Calculate the estimated variance of the parameter as a
weighted sum of the within-chain and between-chain

variance.

Calculate the potential scale reduction factor.



Remember Maximum likelihood estimation?

Density
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Generative model:

1000 simulated runs of the same participant (ie same params), 150 trials each

means of MLE parameters are very close to true values (dashed line)

some individual runs can be off, and param at bounds

in practice, with MLE can’t get these distributions for a single subject (unless we

tested them many times and assumed no meta-learning!)



Expectancy Valence model
lowa Gambling Task, Bayes (MCMC)

P(B|D) x P(D|B)P(O)
w ~ Uniform(0,1)

a ~ Uniform(0,1)

¢ ~ Uniform(-5, 5)

9 t=1,...,150 /

use sampling (MCMC) to do bayes inference (integrals hard to compute analytically )

Tools: STAN, JAGS, WinBUGS and matlab or R; Python (pyMC)



Posterior distributions

one simulated subject, one run, 150 trials

Density

r t 1 r ] | 1 r Y - 1
0.0 05 1.0 0.0 05 1.0 -1 0 1
Attention (w) Updating (a) Consistency (c)

0.0 - 0.0 - -1
r 1 r 1

T T f L] 1
0 2500 5000 0 2500 5000 0 2500 5000
Iteration Iteration Iteration

Posterior distribution shows uncertainty: single subject fit!

Wetzels et al., 2010



Joint and Marginal Posterior Distributions

* Note that the joint posterior distribution has more
information than the marginal distributions

B

¢4



Fitted RL-DDM, joint distributions
ADHD on/off meds
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0.015 0.015 -0.001 -0.343 -0.007
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Fig. 2 Scatterplot and density of group parameter estimates from rate for positive prediction errors (PEs), eta_neg = learning rate for
posterior distributions off (red) and on (purple) medication. negative PEs, m = drift rate scaling, 7, = nondecision time
bb = boundary baseline, bp = boundary power, eta_pos = learning

Pedersen, Frank & Biele, 2017



Groups and individuals

e Two extremes:

— Fit every participant separately, as if they are completely unrelated;

— Pool the data and assume that participants are identical copies

* Both assumptions are unreasonable



Joint and Marginal Posterior Distributions:
Separate individual model

* The individual differences show in the posterior, but the final
(data-less) subject is still modeled by the prior




Groups and individuals

Two extremes:

— Fit every participant separately, as if they are completely unrelated;

— Pool the data and assume that participants are identical copies

Both assumptions are unreasonable
Compromise: participants are similar, yet different (random effects)

Individual subject parameters are drawn from distributions, and we
also infer the parameters of those group distributions...



Groups and individuals

Two extremes:
— Fit every participant separately, as if they are completely unrelated;

— Pool the data and assume that participants are identical copies

Both assumptions are unreasonable
Compromise: participants are similar, yet different (random effects)

Individual subject parameters are drawn from distributions, and we
also infer the parameters of those group distributions...

P(D|0)P(OIN) P(N)
P(D)

P(0,\|D) =

P(D|0)P(8])) P(\)
[ P(D|0)P(6]A) P(\)dfd

P(,\|D) =



p. ~ Normal(0, 1)
o ~ Uniform(0, 1.5)

v; ~ Normal(py, A\y)
a; ~ Normal(pa, Aa)
% ~ Normal(y, Ay)

vy =Pl’0bit(w.‘ )
a;=Probit(a;)
Yi=Probit(c;)




Joint and Marginal Posterior Distributions:
Structured individual differences model

e First three subjects give almost the same parameter
inference, but now the fourth subject borrows from what is
learned about them (“sharing statistical strength”)




Hierarchical Bayes Improves Parameter Recovery
in RL and DM models

Recency Utility Shape § Consistency § Loss Aversion
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Ahn et al in 2011

Wiecki, Sofer & Frank 2013
Pedersen, Frank & Biele 2017



Model Selection / Comparison

- “A scientific theory should be as simple as possible, but no simpler”

AValues . AValues . AValues -
2 :o 3 - : o » : B
.o ° ‘. ----- v . .o. - * ‘ o .’ g *. . »
. .0 § S o 0’0 - .. o . . ° : , o »
. T ‘ ... 2 - .. ..”:. :‘..‘
Tlmz Time Tim'e
Underfitted Good Fit/Robust Overfitted

e Various metrics of model selection (Bayes Factor, BIC, AIC, DIC, WAIC, LOO, FE..),
* but all are, roughly: - P(D| M) + complexity(M)

* None is perfect. Do model recovery simulations for your task and models!



Posterior probabilities and Bayes factors (BF)

Posterior probability for each model

" B ﬂ-(y‘u,:\/[k)ﬁ(.f\/[k)
(Mily) = Sy Mi)r(M;)

Marginal likelihood: 7(y| M) = [ m(y|0x, My )m(0y
Posterior odds:

T(Mily)  mly| My)  m( M)

= X

Tl'( .Mj \y) ﬂ'(y\ .Mj) W( .Mj)
N N,

Bayes factor prior odds

» Choose the model with the largest probability 7( My|y)

> BF gives a measure of evidence for model M versus M;



Model Comparison P @3
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The magazine model comparison game Doing Bayesian
Leaves all of us wishing that we looked like them. | Data, Analysis

But they have mere fantasy’s bogus appeal, ¢,
"Cause none obeys fact or respects what is real. ” A




Warning! (and opportunities...)

Just because a model accounts for most variance doesn’t mean it is for the reason that we
think. Parameters soak up variance as best they can given model constraints.

e.g., a is NOT corticostriatal synaptic plasticity. a = update of organism as a whole..



Warning! (and opportunities...)

How well does the “best” (least worst) model fit key features of the data?
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Figure 1. A collection of data sets produced by our technique. While different in appearance, each has the same summary statistics
(mean, std. deviation, and Pearson’s corr.) to 2 decimal places. (x =54.02, y = 48.09, sdx = 14.52, sdy = 24.79, Pearson’s r = +0.32)



Warning! (and opportunities...)

How well does the “best” (least worst) model fit key features of the data?
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Model validation is informative
about where your model misses

A

Probability(Go)

1

0.5

Go rewarded
Go to win

fz?wm

20 40 60

0.5

0

Nogo punished
Go to avoid

20

40

60

C

1

0.5

Nogo rewarded D
Nogo to win

Go punished
Nogo to avoid

1

20 40 60 20 40 60

Guitart Masip et al, 2011



Model validation:
simple RL model

Q,.,, € Q.+« RPE

Each option value is updated with RPE and
stored until needed again



Anne Collins

RILWM Task

Beginning of block 1.
n. = 2 stimuli to learn. Correct

Block 2

Reinforcement learning:

test effect of reward history

e

Set-size manipulation:
test WM load effect [l
test WM decay effect [I

Beginning of block 2.
n, = 6 stimuli to learn.



RL Model simulations

1 RL # of stimuli to learn
[ in the block
0.8
_ N =2
806
()
%0.4
—=—4 stim Ng= 4
0.2 5 stim
—¥—6 stim
O L ]
0 5 10

lteration # nS =6



Model validation failure:
simulate your data!

Subjects

1 _
0.8 0.8}
§ 0.6 0.6¢
o
%0.4 - 0.4+
—a—4 stim —&#—4 stim
0.2 5 stim 0.2¢ 5 stim
—¥—6 stim —¥—6 stim
0 : - 0 .
0 5 10 0 5 10
lteration # lteration #

Effect of set-size on learning is not

accounted for by vanilla RL

Collins & Frank, 2012; 2017, 2018



Model validation failure

Best fit learning rates o
0.9

0.8
0.7

Subjects

—a—4 stim
5 stim
—¥—6 stim

0.6-

_ 0.8}

60.5_‘ o

0.4t 0.6} ’
0.3} 04l 4
0.2k .

: 021
- -
00— 4 5 6 0

0 5

Number of stimuli in set lteration #

Effect of set-size on learning is not
accounted for by vanilla RL

(even with multiple learning rates)

10



Model validation failure

Subjects

5 1

[ -

g 09 0.8|

g 09 06!

® 085t cnieins o ag

E v — —early lsarning ‘1-[ 04l

Q —lataleaming ¥ |

© " 5 2 4 E &8 7 —&—4 stim
1 2 3 4656 7 02! 5 Sim

: i
Delay since last correct 0 —*—6 stim
0 5

lteration #

Effect of delay on learning is not
accounted for by vanilla RL



Model validation success!
RL+WM explains behavior

o RL+WM Subjects RLWM accounts for both load and delay effects
e —a- - Decrease in effect as RL learns

% - Decrease in effect as RL becomes mort
g - g reliable than WM

§ —a— g

= —— 6

2
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§ Trials per stimulus Trials per stimulus
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Model-based EEG

&

4

z

3

=

2 b

: F

5 ol

gw o=

400
1 01t 02
time from FB (s)

(B) 108 ms [early]

V(et) ~ Po(e.t) + Prre(e,t) x | + Psee(e,t) x

L o =N w W

04 FPE res(SPEFPE)  SPE

352 ms [medium]

592 ms [late]

Collins & Frank 2016 Cognition
Collins & Frank 2018 PNAS




Within-trial dynamics: RL

RPE = R(t) — Q(t)

SQ

300 ms

Note: reward =1
In all cases

High

Stim onset 0

:Expectation Prediction error

s

Time within trial

Collins & Frank 2018 PNAS



Within-trial dynamics: RL

RPE = R(t) - 3(15)

SQ

300 ms

Note: reward =1
In all cases

High

Stim onset 0

:Expectation Prediction error

s

Time within trial

Collins & Frank 2018 PNAS



300 ms

Within-trial dynamics: RL

I FCZ

High

'Stim onset

: Expectation

FPE = R(t) — SQ(t)

Note: reward =1
In all cases

Prediction error

Time within trial

s

Collins & Frank 2018 PNAS



300 ms

Within-trial dynamics: RL

| FCz < High

'Stim onset

FPE = R(t) — SQ(t)

Note: reward =1
In all cases

:Expectation Prediction error

|
Time within trial

s

Collins & Frank 2018 PNAS



300 ms

Within-trial dynamics: RL

| FCz < High

'Stim onset

Prediction error

I —— e e

C) =
2 0.4
<
=
o
2 02
&
=)
n
o
5-0.2
o

, FPE(SQ)
-

Time within trial

Collins & Frank 2018 PNAS



300 ms

Set Size

564 ms

Within-trial dynamics: WM/RL interactions

e

p
©
N

Tr sQ

o
S

regression weights
o

High FPE(SQ) FPE(SWM)

Stim onset ol

sSwMm Hig

:Stim onset

:Expectation Prediction error

|
Time within trial

Collins & Frank 2018 PNAS



Why use hierarchical bayes:
Detection of effect as a function of # Subjects

Subjects experiment

_5 0.7

O

o 0.6}

P

Q

o 0.5

o

2 0.4 o oHB

5 o—eonNHB

S 0.3+ o—o ML .
o o—e Quantiles
a 0.5 10 15 20 25 30

Number of subjects

Wiecki et al 2013



Regression of physio variable onto DDM param:
Probability of detecting an effect

1.0
|
2 0.8
3
Trial-by-trial regression 5 0.6
experiment for varying & 0.4- |
effect sizes o
€ 0.2 :
a .
0.0+ Effect size: 0.1 -
1.0 ¥ S I N S
& 0.8 0.8
]
2 0.6 0.6
()]
o 04 { 0.4
(o]
||®® HB
-g 0.2 0.2 Shiic
2 0.0 Effect size: 0.3 0.0H @@ ML Effect size: 0.5 -
20 40 60 80 100 120 140 20 40 60 80 100 120 140
trials trials

Wiecki et al 2013



- Drift diffusion model as the choice rule
" in reinforcement learning

Slower Responses

Cautious Fewer Errors

<«— RT Distribution Correct

Control Signals
——
——
-——
—_—
+ Threshold

¥~ RT Distribution Error

| 2 » cte » P29 )C 9
{ Impulsive Faster Responses
More Errors

Pedersen, Frank & Biele, 2017




Simultaneous Estimation of RL and DDM

Boundary Separation Non—decision time Choice Consistency Learning Rate
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Pedersen, Frank & Biele, 2017



estimated bb estimated bp

estimated eta_pos

Parameter recovery
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Fitted parameters, joint distributions
ADHD on/ off meds

0.013 0.019 0.006 -0.453 -0.095
0.015 0.015 -0.001 -0.343 -0.007

-0.003 0.019 0.007 -0.001
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Fig. 2 Scatterplot and density of group parameter estimates from rate for positive prediction errors (PEs), eta_neg = learning rate for
posterior distributions off (red) and on (purple) medication. negative PEs, m = drift rate scaling, 7, = nondecision time
bb = boundary baseline, bp = boundary power, eta_pos = learning

Pedersen, Frank & Biele, 2017



HDDM empirical priors

HDDM Informative model

a Vv
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fMRI and EEG experiment
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Frank et al 2015



fMRI and EEG experiment: behavior

Reward probability: 65% B

Behavior and Model Fit
Quantile Probability Plot
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posterior predictive checks are important!

Frank et al 2015



fMRI and EEG experiment

Response density
(upper boundary)

Upper response boundary

o
3

nt ?
3t

threshold (a)

;
L3
Al

Reponse density

(lower boundary) time

Frank et al 2015

also: STN spikes directly linked to threshold during conflict task, Herz et al 2016



Application to Computational Psychiatry and Neurology

Clinical and Level 1: Level 2: Level 3: Level 4:
Nonclinical Population Cognitive-Task Computational Parameter Classification and
Battery Modeling Estimation Clustering

54 L »{4\»«7 _)Qf@é@@éﬁ_)un
e _[e] [

Wiecki, Poland & Frank 2013



Why use DDM: Simulation experiment and classification of
groups

Classfiying Simulated Date
1.0

Area Under the Curve

0.5

DDM Summary Stats

e generated data from DDM with two groups with different parameters

e classification of observed data based on fitted model params or raw
behavioral summary statistics

Wiecki, Poland & Frank 2013



Real data: classification of DBS state

Classifying DBS State
1.0

0.81*

0.8

0.3

0.4

Area Under the Curve

0.2

0.0
DDM - Theta RT —Theta

Coefficients Coefficients

Wiecki, Poland & Frank 2013

Also classifies Huntington’s disease before symptom onset! Wiecki,et al., 2016



Linking levels

Linking Across Levels of Computation in

Model-Based Cognltlve Neuroscience Reinforcement-Based Decision Making in Corticostriatal

Circuits: Mutual Constraints by Neurocomputational

Michael J. Frank and Diffusion Models

Strategy to interpret and link across levels of description

Mutually informative: algorithm informs biological interpretation; biology informs
abstraction

Frank, 2015; Collins & Frank, 2013; Ratcliff & Frank, 2012; Franklin & Frank, 2016)



Multiple levels of analysis
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Role of the basal ganglia in action selection and initiation: +8 I% [E I AY ml
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Convoluted architecture is there to ensure that actions are nofj t.

triggered accidentally
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