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2018 Computational Psychiatry Satellite @ SOBP

Program

8 - 8.50 Coffee & breakfast

8.50 Opening Remarks Michael Browning
9 - 10.45 Reinforcement Learning - theory Yael Niv
10.45 - 11.15 Coffee break
11.15 - 11.45 Data in search of model Contributed talks

Andreas Frick
Merage Ghane
Verena Ly
Laurel Morris
Brooke Staveland
Robert Whelan

11.45 - noon Model in search of data Contributed talks
Manish Saggar
Shan Siddiqi

noon - 1.30 Lunch break

1.30 - 3.15 Model fitting Michael Frank
3.15 - 3.45 Coffee break
3.45 - 5.30 RL applications to mental health Quentin Huys
5.30 - 6 Discussion
6 Closing Remarks Martin Paulus

Speakers

Michael Frank, PhD, Brown University
Andreas Frick, PhD, Stockholm University
Merage Ghane, MA, Virginia Tech/National Institute of Mental Health
Quentin Huys, MD PhD, University of Zürich & ETH Zürich
Verena Ly, PhD, Leiden University
Laurel Morris, Cambridge University
Yael Niv, PhD, Princeton University
Manish Saggar, PhD, Stanford University
Shan Siddiqi, MD, Harvard Medical School, MGH/McLean
Brooke Staveland, Stanford University
Robert Whelan, PhD, Trinity College Dublin
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Rany Abend, PhD, NIMH
Brendan Adkinson, Yale University School of Medicine
Ben Andrew, Austen Riggs Center
Tali Ball, PhD, Stanford University
Daniel Barron, MD, Yale University
David Benrimoh, MD, CM, UCL/McGill
Isabel Berwian, University of Zurich and ETH Zurich
Caroline Bévalot, Hospices Civiles de Lyon, France
Venkat Bhat, MD, University of Toronto
Vanessa Brown, University of Pittsburgh
Mingbo Cai, PhD, Princeton University
Pablo Carillo, Hospices Civiles de Lyon, France
Linda L Carpenter, MD, Brown University/Butler Hospital
Henry Chase, University of Pittsburgh
Alexandra Cohen, PhD, New York University
Jessica Cooper, PhD, Emory University
Zhuoya Cui, Virginia Tech
Marilyn Cyr, PhD, PsyD, New York State Psychiatric Institute
Daniel Davies, PhD, University of Cambridge
Lorenz Deserno, PhD, MPI for Humanan Cognitive and Brain Sciences Leipzig
Stefan Ehrlich, MD, Technische Universität Dresden
Angela Fang, PhD, Harvard Medical School
Morgan Flynn, PhD, Yale University School of Medicine
Greg Fonzo, PhD, Stanford University School of Medicine
Anna Frey, University of Reading
Andreas Frick, Stockholm University
Bowen Fun, PhD, Caltech
Ken Garcia, MD,
Merage Ghane, MA, Virginia Tech/NIMH
Reza Hosseini Ghomi, MD, MSE, University of Washington
Jessica Gilbert, PhD, NIMH
Jimmie Gmaz, Dartmouth College
Jackie Gollan, PhD, Northwestern University
Jerry Guintivano, PhD, University of North Carolina at Chapel Hill
Christopher Hammond, MD PhD, Johns Hopkins University
Jessica Hua, MA, University of Missouri
Noboru Hiroi, PhD, Albert Einstein College of Medicine
Olof Hjorth, MSc, Uppsala University Sweden
Philipp Homan, The Feinstein Institute for Medical Research
Matthew Hudgens-Haney, PhD, UT Southwestern Medical Center
Eugene Young-Chul Jung,
Claire Kaplan, MS, University of Maryland College Park
Dr. Teresa Katthagen, Charité-Universitätsmedizin Berlin
Alfred Kaye, Yale University
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Jakub Kraus, Karolinska Institute
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John Erik Leikauf, MD, Stanford University School of Medicine
Dr. Julia Linke, NIMH
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Verena Ly, PhD, Leiden University
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Flora Moujaes, Yale University
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Kate Nussbaum, New York University
Georgia O’Callaghan, PhD, NIMH
Katie O’Connell, Georgetown University
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Data in search of model - abstracts

Dopamine release and activity in the amygdala during fear conditioning
Andreas Frick1, Fredrik Ahs2, Johannes Bjrkstrand3, Mark Lubberink4and Mats Fredrikson5

1Stockholm University, Uppsala University; 2Uppsala University, Karolinska Institutet; 3Uppsala
University, Copenhagen University Hospital, Lund University; 4Uppsala University; 5Uppsala University,

Karolinska Institutet;

The authors declare no conflict of interest.

Data Healthy volunteers were scanned with simultaneous bolus+infusion [11C]raclopride positron
emission tomography (PET) and functional magnetic resonance imaging (fMRI) to measure
dopamine release and neural activity during a 20 minute differential fear conditioning paradigm,
pairing one cue (CS+) with an aversive electrical shock while another cue (CS-) was never
paired with shock. Skin conductance was recorded during the fear conditioning. Thus, the data
consists of PET measure of changes in dopamine concentration (5 minute frames), fMRI mea-
sure of neural activity (3 s TR), and skin conductance responses during fear conditioning. Skin
conductance responses (SCRs) to CS+ subtracted from CS- is used as the fear learning measure.
Data collection is ongoing. We have so far scanned ten volunteers (meanSD age: 25.15.9 years;
7 women) and plan to scan 8 more.

Question Functional neuroimaging has revealed a critical role for amygdala in acquisition of fear
memories, and animal studies have indicated that amygdala dopamine signaling is necessary
for fear conditioning. However, little is known regarding the relationship between dopamine
signaling, amygdala activity and fear learning in humans. Thus, we are interested in testing
these relationships in our dataset. We are aware that this is a bit vague, but are happy to discuss
more specific hypothesis during the meeting.
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Optimal integration of perceptual and reward uncertainty in decision-making and
the role of general task structure

M. Ghane1, S.A. Japee2, J.A. Richey3and L.G. Ungerleider4

1Virginia Tech/National Institute of Mental Health; 2National Institute of Mental Health; 3Virginia Tech;
4National Institute of Mental Health;

The authors declare no conflict of interest.

Data: To study how individuals make choices under simultaneous perceptual and reward uncer-
tainty (PU;RU), we systematically varied uncertainty in both domains. On each trial, participants
viewed two targets (face/house) and two distractors (cars) and were instructed to maximize
reward by making speeded choices. We manipulated PU (5 conditions) by altering the phase
coherence of target images. Manipulations were negatively correlated between face and house
targets (CohFace + CohHouse = 81%). Distractors were fixed at the lowest coherence level.

We manipulated RU (5 conditions) by varying the reward probability ratio for receiving 8 (oth-
erwise 2) between face/house targets from to 4/1. Reward probabilities were also negatively
correlated between targets. Distractors were associated with no reward and all conditions were
explicitly instructed. To test the impact of task design on behavior and eventually neural re-
sponse, we designed two task versions. Version one fixed RU within run (varied randomly be-
tween runs), while PU was randomly varied across trials. In version two, PU was fixed within
run (varied randomly between runs) while RU varied randomly across trials.

Participants completed 30 trials x 25 conditions x 2 tasks (75 trials per run, 750 trials per task;
1500 trials total). Each run began with a self-paced cue stating the run condition. Trials started
with a 1000ms fixation, followed by a 700ms cue stating the trial condition, 300ms stimulus,
1300ms mask, and 800ms feedback (identity of the stimulus selected and reward outcome of
single trial). Participants had 1600ms from stimulus presentation to end of mask to make choice.

Question: How do perceptual and reward uncertainty interact and integrate to alter subjec-
tive value? Specifically, is the impact of PU and RU on behavior (and eventually associated
decision-relevant neural substrates) unique to each domain, or generally reflective of the overall
uncertainty and method of uncertainty manipulation (stable/dynamic) independent of domain?
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The Biasing Effect of Perceived Control on Instrumental Behavior
V. Ly1, P. Piray2, M. Jepma3, M. Rose4, K. Eleftheriadou5and M. Delgado6

1Department of Clinical Psychology; Leiden Institute for Brain and Cognition, Leiden University, Leiden,
The Netherlands; 2Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA;

3Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands; 4Department of
Clinical Psychology, Leiden University, Leiden, The Netherlands; 5Department of Clinical Psychology,
Leiden University, Leiden, The Netherlands; 6Department of Psychology, Rutgers University, Newark,

New Jersey 07102, USA;

The authors declare no conflict of interest.

Data: Healthy participants (N=31) performed a two-phased controllability task. Phase1: Par-
ticipants learned keypresses to prevent shocks for Qcontrollable R cues. Events for Quncon-
trollable R cues were yoked, except that random keypresses were required. Phase2: Participants
learned instrumental go/nogo-responses in a probabilistic learning task based on monetary feed-
back for cues that were previously associated with control/no control. Controllability and op-
timal response were manipulated independently enabling the assessment of perceived control
biases of instrumental action. Thus, there are 4 trialtypes: 1. control-go, 2. control-nogo, 3.
uncontrollable-go, 4. uncontrollable-nogo; 2 cues per trialtype, 45 trials per cue, resulting in a
total of 360 trials.

Question: Controllability has been theorized to support decision making by modulating con-
trol allocation and instrumental responding. A notable feature of perceived control is that it
can be inherently rewarding. Indeed, the appetitive value associated with perceived control has
been suggested to bias control-seeking behaviors. An outstanding question is whether the affec-
tive properties of perceived control influences instrumental responding. We tested whether per-
ceived control would non-selectively promote instrumental performance; or whether the impact
of perceived control is action-specific due to Pavlovian valence-action (appetitive-go) coupling.
Model-free analyses of choice data demonstrate increased instrumental performance for control-
lable (versus uncontrollable) cues, but this effect was not shown to be action-specific. However,
when controlled for initial action bias, participants demonstrated increased performance for
control-go specifically. With a model-based approach, I hope to better control for Qbaseline R
action-bias, and test for the action-specificity of control biases of instrumental learning (control
potentiates go; control potentiates learning; control potentiates go-learning).
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How to model novel constructs of volition and self-agency;
L. S. Morris and J. W. Murrough

Department of Psychiatry, Icahn School of Medicine at Mount Sinai

The authors declare no conflict of interest.

While motivational deficits are a core feature of several psychiatric disorders, the construct of vo-
lition (self-driven motivation) and its differentiation from externally-generated motivation has
been under explored. Classic measures of volition with effort valuation tasks have been devel-
oped and validated (see Research Domain Criteria), but they entail choices between externally-
generated effort expenditure for reward and do not address potential levels of internally-generated
motivation (volition).

Similarly, deficits in self-agency (subjective awareness of self as distinct from other) have been
suggested in psychiatric disorders and neural representations of the self-other distinction are
negatively associated with schizophrenia and depression severity. However, while deficits in
self-agency are noted in psychiatry, current diagnostic and therapeutic models are not informed
by its empirical operationalization.

Thus, we have developed a novel battery of cognitive tasks designed to capture internally-driven
motivation (volition) and valence-dependent self-agency in humans. The internal-external mo-
tivation task (IMT) captures internally-driven motivation as a free-choice of preferred effort ex-
penditure for varying rewards. The self-agency task (SAT) captures valence-dependant agency
attribution. Both tasks require no learning.

Data: For the IMT, task performance data includes effort expenditure*reward curves for two
conditions of internally-driven and externally-driven motivation (the latter similar to standard
effort discounting tasks) for 8 levels of monetary reward and 13 levels of effort. For the SAT, data
includes trial-by-trial ratings of self versus other following positive, negative or neutral feedback
based on a simple reaction time task.

Question: We aim to dissociate internally-driven from externally-driven motivation and charac-
terise the properties of both (i.e. Utility function fitting). We also aim to demonstrate the effect
of valence on agency attribution in a model that accounts for task performance.
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High-Resolution, Multimodal Data in MDD and Healthy Control Participants
B. R. Staveland and L. M. Williams

Stanford University

The authors declare no conflict of interest.

Background: In fMRI data, the blood oxygenation dependent (BOLD) signal is a noninvasive
proxy for hemodynamic responses to neuronal activity. Therefore, a detailed characterization of
the spatial and temporal properties of the BOLD signal is fundamental for accurately inferring
the underlying neuronal activity. While the temporal properties, via the balloon models, and
the spatial properties, via hemodynamic point spread functions, of the BOLD signal have been
characterized by existing physiologically based models, it is commonly agreed that the adjoined
spatiotemporal properties are relatively poorly understood.

Data: High-spatial and high-temporal resolution multimodal data were acquired from 204 un-
medicated patients with MDD during cognitive control, continuous performance, and emotional
processing task paradigms. Additionally, complimentary data from 69 healthy control subjects
were also acquired.

Model: We are interested in developing a synthetic, biophysically-detailed model to characterize
which task-evoked circuits function within which frequency bands. Ideally, this model should
formalize how EEG synchrony in a single subject relates to their connectivity in fMRI.

Relevance: Such a model has clear benefits for many areas of neuroscience, particularly those
concerned with a detailed understanding of wide-spread, whole-brain connectivity. As the data
were also collected in a clinical sample, we hope this model will elucidate individual differences
in depression pathology.

10



2018 Computational Psychiatry Satellite @ SOBP

Reinforcement learning in adult ADHD, addiction, and working memory deficits

R. Whelan1, M. Bennett2, Z. Cao3and L. Rai4

1Trinity College Dublin; 2Trinity College Dublin; 3University College Dublin; 4Trinity College Dublin;

The authors declare no conflict of interest.

Data: I will (very) briefly describe several datasets in search of models. First, Probabilistic Selec-
tion Task (PST) data from adults aged 55+ (final sample size=250), including a subsample with
poor working memory performance (¡15th percentile on a standardized measure). n=60 com-
pleted the PST under concurrent high density electroencephalography (EEG), with spontaneous
eye blink measurements also recorded. Second, behavioural PST data from ¿120 participants
in a smoking study (current smokers, ex-smokers, e-cigarette users and never smokers). Third,
data from a task involving probabilistic reward and punishment, including contingency reversal
phases: 31 adults with ADHD and 31 matched controls. Fourth, a Pavlovian threat-conditioning
protocol that was presented to 45 adults with ADHD +/- comorbid anxiety and 45 matched con-
trols. On each trial, participants indicated their threat-expectancy on a scale, and high density
EEG was recorded throughout. Fifth, the monetary incentive delay task (MID) was administered
under high density EEG (and MRI in some cases) to a range of participants, including current
smokers, acutely abstinent smokers (n 150), individuals with adult ADHD (n 50) and first degree
relatives of those with ADHD (n 40), non-ADHD controls (n 50) and young adult alcohol users
(many with heavy use; n 90). All ADHD participants completed a medication washout period,
and genetic data will be available on most participants.

Question: In general, we are searching for models that will yield insights into between-group
differences. For Datasets 1-3, we are interested in drift diffusion models; for Dataset 4, in
experience-weighted attraction (EWA) models; and temporal difference models for MID tasks.
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Model in search of data - abstracts

Modeling brain dynamics to ground diagnostic nosology in biological features;

Manish Saggar

Stanford University

The author declares no conflict of interest.

Model: The diagnostic nosology as currently used in psychiatry is built entirely upon symptoms
and not biology. Thus, although the diagnosis made using DSM-V is highly reliable, it is not
necessarily (biologically) valid. With the advent of modern noninvasive neuroimaging modali-
ties, sophisticated methods have been developed to examine both structural and functional ac-
tivity/connectivity of the brain for characterizing different psychiatric disorders. Nevertheless,
several issues remain in developing neuroimaging based diagnostic nosology that is disorder-
specific, person-centric, and grounded in biology. Here we propose to use a combined modeling
approach of Topological Data Analysis (TDA) with Biophysical Network Modeling (BNM) as a
“lens” towards (a) characterizing/stratifying psychiatric illness and (b) generating biologically
grounded mechanistic insights regarding how neural processes interact during ongoing cog-
nition to give rise to different dynamical landscapes in patient populations. We have recently
shown that using TDA we can reveal brain’s overall dynamical organization without arbitrar-
ily averaging neuroimaging data across space or time at the single participant level (Saggar et
al. 2018 Nature Communications). By combining our TDA approach with BNM we aim to also
reveal the mechanisms underlying individual differences in brain dynamics.

Question: How to ground diagnostic nosology of psychiatric disorders into biological features?
To start with we are interested in application of this approach to psychiatric populations where
the neural dynamics are putatively on the opposite ends of the spectrum, for example, Major
Depressive Disorder (MDD) and Attention Deficiency and Hyperactivity Disorder (ADHD).
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Mapping of individualized brain network architecture to refine neuropsychiatric
biotyping;

Shan H. Siddiqi1, Carl D. Hacker2, Sridhar Kandala3, Maurizio Corbetta4and David L. Brody5

1Harvard Medical School, MGH/McLean; 2Washington University School of Medicine in St. Louis;
3Washington University School of Medicine in St. Louis; 4Washington University School of Medicine in

St. Louis; 5Uniformed Services University of the Health Sciences

Conflicts of interest
S. Siddiqi: Scientific advisor for SigNeuro LLC. The other authors declare no conflicts of interest.

Model: The recent advent of individualized resting-state network (RSN) mapping enables fMRI-
based identification of individual differences by using machine learning to classify brain regions
into subject-specific network maps. Functional connectivity between these maps can provide
robust individualized biomarkers of disease. This allows construction of a general linear model
(GLM) to detect associations between unique clinical phenotypes and associated connectivity
profile.

This approach was initially applied to a model of neuropsychiatric disturbance associated with
traumatic brain injury (TBI), which is commonly associated with major depression and post-
traumatic stress disorder (PTSD). TBI-associated depression is widely believed to be clinically
distinct from primary major depressive disorder (MDD) and PTSD, but clear physiologic distinc-
tions remain elusive. Resting-state fMRI data were obtained from 91 subjects across four datasets
encompassing healthy controls (n=31), patients with TBI-depression (n=16), non-depressed
TBI patients (n=19), and patients with MDD (n=27). After controlling for the effect of co-
morbidities and datasets, individualized network architecture revealed that comorbid PTSD was
associated with relative hyperconnectivity within ventral attention/salience network. TBI, TBI-
depression, and MDD were distinguished by connectivity between dorsal attention network,
default mode network, and subgenual anterior cingulate cortex. Interestingly, TBI-depression
and MDD showed connectivity changes in opposite directions. All of these effects were statisti-
cally significant (p¡0.05) using individualized network maps, but not with group-based network
atlases.

Prediction: This model can be extended to any complex neurobehavioral syndrome to discover
and validate discrete biotypes. This requires amalgamation of cross-diagnostic datasets with
high-quality resting-state fMRI data and clear clinical phenotyping with well-characterized co-
morbidities.
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